The Ring Contraction Step in Gibberellin Biosynthesis

By JAN E. GRAEBE* and PETER HEDDEN

(Pflanzenphysiologisches Institut der Universität D-34 Göttingen, Germany)

and JAKE MACMILLAN*

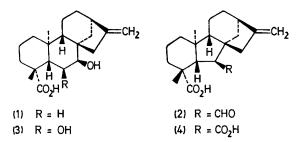
(Department of Organic Chemistry, The University, Bristol BS8 1TS)

Summary The conversion of ent-7 α -hydroxykaurenoic acid (1) into gibberellin A₁₂-aldehyde (2) and ent-6 α , 7 α -dihydroxykaurenoic acid (3) involves the loss of one hydrogen atom at C-6.

WE have previously demonstrated the conversion of *ent*- 7α -hydroxykaurenoic acid (1) by ring contraction into gibberellin A₁₂(GA₁₂)-aldehyde (2) and by hydroxylation to *ent*- 6α , 7α -dihydroxykaurenoic acid (3) in a cell-free system from the endosperm of *Cucurbita maxima* seed.^{1,2} The formation of GA₁₂-aldehyde (2) is part of the pathway by

which the cell-free system converts mevalonate into several gibberellins including gibberellin $A_4^{2,3}$ In the presence of Mn^{2+} , however, GA_{12} -aldehyde (2) is converted only into GA_{12} (4), further steps being inhibited. The *ent*-6 α -hydroxylation is an alternative reaction which takes place simultaneously with the ring contraction both in the presence and absence of Mn^{2+} . The incubation of *ent*-7 α -hydroxykaurenoic acid (1) in the presence of Mn^{2+} leads to the formation of only four major products: GA_{12} -aldehyde (2), GA_{12} (4), *ent*-6 α , 7 α -dihydroxykaurenoic acid (3), and an oxidation product of the latter, an unidentified *ent*-kaurenoic acid derivative. We now present results on the

mechanism of the ring contraction and ent-6a-hydroxylation using this system and ³H: ¹⁴C double labelled substrate.


TABLE. Radio-activity (d.p.m.) of ent-7a-hydroxykaurenoic acid and products

Compound					۶H	14C	⁸ H: ¹⁴ C
ent-7 α -hydroxykaurenoic acid (1)							
Initial (1/10th aliquot)				6792	3335	2.04	
Recov	ered				28555	12654	$2 \cdot 26$
GA ₁₂ -ald	ehyde (2)				6993	7126	0.98
$GA_{12}^{-}(4)$		••		••	4279	4748	0.90
ent-6a, 7a-Dihydroxykaurenoic acid (3)					6496	5841	1. 11
,,	,,	,, met	tabolit	., е	4 506	3502	1.29

ent-6,6-[³H₂]-7a-Hydroxykaurenoic acid was prepared from ent-7-oxokaurenoic acid by exchange with MeONa-MeO³H followed by reduction with AlPrⁱ₃-PrⁱOH and was mixed with ¹⁴C-labelled ent-7a-hydroxykaurenoic acid prepared from 2-[¹⁴C]mevalonate in the cell-free system. The specific activity of the ³H-label in the mixture was 1.9μ Ci/ μ mol; the amount of ¹⁴C was varied to produce ³H: ¹⁴C ratios from 1.39 to 2.04. The doubly labelled substrate was incubated with endosperm preparation in the presence of Mn^{2+} and the usual co-factors.¹ The products were isolated by t.l.c. and their radioactivity measured by liquid scintillation counting using internal standardisation. In several instances the identity of the products was confirmed by g.l.c. Their identification by combined g.l.c.-m.s. has been described previously,1,2

The results presented in the Table show that the ³H: ¹⁴C ratios in the products are only half of the ratio in the substrate. Thus the formation of GA_{12} -aldehyde (2) and ent- 6α , 7α -dihydroxykaurenoic acid (3) involves the loss of one hydrogen atom from the 6-position in ent-7 α -hydroxykaurenoic acid (1). As would be expected from this mechanism an isotope effect was observed. Since the ³H and ¹⁴C labels are present in different molecules in the

mixed substrate, the isotope effect leads to a slower conversion of ³H-molecules than ¹⁴C-molecules and the ³H:¹⁴C ratio increases in unchanged substrate as the reaction proceeds. Up to a 7-fold increase in this ratio was observed in experiments with the reaction nearly complete with respect to the ¹⁴C-substrate.

Based upon a ³H: ¹⁴C ratio of 2:1 in the substrate, the average ${}^{3}H$: ${}^{14}C$ ratios for GA_{12} -aldehyde (2) and ent-6 α , 7 α dihydroxykaurenoic acid (3) in seven experiments were 0.98and 1.12 respectively. A lower ratio 0.82 was obtained for GA_{12} (4) and is probably due to partial exchange during the oxidation step. Our results conflict with those of Hanson et al.,⁴ who observed no loss of ³H in GA_{12} -aldehyde (2) isolated from the culture of the fungus Gibberella fujikuroi after incubation with [1,1-³H₂,1-¹⁴C]geranyl pyrophosphate. They suggested on the basis of a low (0.005%) incorporation that the ent-6a-hydrogen atom migrates to C-7 during ring contraction. Our results are, however, in accord with the proposition by the same group that the ring contraction is initiated by abstraction of the ent-6a-hydrogen itself.⁵

We thank Miss G. Bodtke for technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft and the S. R. C.

(Received, 11th December 1974; Com. 1500.)

- ¹ J. E. Graebe, D. H. Bowen, and J. MacMillan, Planta (Berlin), 1972, 102, 261.
- J. E. Graebe, D. H. Bowen, and J. MacMillan, Frank (Berlin), 1912, 102, 201.
 J. E. Graebe, P. Hedden, P. Gaskin, and J. MacMillan, Phytochemistry, 1974, 13, 1433.
 J. E. Graebe, P. Hedden, P. Gaskin, and J. MacMillan, Planta (Berlin), 1974, 120, 307.
 J. R. Hanson, J. Hawker, and A. F. White, J.C.S. Perkin I, 1972, 1892.
 R. Evans, J. R. Hanson, and A. F. White, J. Chem. Soc. (C), 1970, 2601.